文章编号: 1671-6612 (2024) 04-517-08

仿生鱼鳞结构对风管气流影响数值研究

罗 亮1 王丽娟1 任永恒1 申慧渊2

(1. 西安工程大学城市规划与市政工程学院 西安 710048;

2. 西安航空学院能源与建筑学院 西安 710077)

【摘要】 基于 RSM 模型,通过数值模拟的方法研究鱼鳞结构在风管中的减阻特性。对比上凸型鱼鳞排布、上凸型单个鱼鳞排布及下凹型单个鱼鳞排布在风管中的减阻率。结果表明,上凸型鱼鳞排布与上凸型单个鱼鳞排布相比平滑风管,使风管内的阻力增大。而下凹型单个鱼鳞排布能够对风管减阻起到效果。当修改下凹形单个鱼鳞排布的深度 h (h=1mm, 3mm, 5mm),排布间距 L 不变时,h=5mm 时,减阻效果最佳,最大减阻率为 2.5%。当修改下凹形单个鱼鳞结构的排布间距 L (L=2cm, 2.5cm, 3cm),深度 h 不变时,当 L=3cm 时,对风管的减阻能力最佳,最大减阻率为 2.8%。
 【关键词】 非光滑表面;风管减阻;鱼鳞结构;数值模拟

中图分类号 TU834.4+3 文献标志码 A

Numerical Study on the Effect of Bionic Fish Scale Structure on Duct Airflow

Luo Liang¹ Wang Lijuan¹ Ren Yongheng¹ Shen Huiyuan²

(1.School of Urban Planning and Municipal Engineering, Xi'an Engineering University, Xi'an, 710048;

2. School of Energy and Architecture, Xi'an College of Aeronautics and Astronautics, Xi'an, 710077)

(Abstract) Based on the RSM model, the drag reduction characteristics of fishscale structures in ducts are investigated by numerical simulation. The drag reduction rates of up-convex fishscale arrangement, up-convex single fishscale arrangement and down-convex single fishscale arrangement in ducts are compared. The results show that the up-convex fishscale arrangement smoothes the ducts compared to the up-convex single fishscale arrangement, which increases the resistance in the ducts. And the down-concave individual fishscale arrangement can be effective in reducing the resistance in the duct. When modifying the depth h (h=1mm, 3mm, 5mm) of the concave single fishscale row, the row spacing L is unchanged, h=5mm, the best resistance reduction effect, the maximum resistance reduction rate of 2.5%. When the spacing L (L=2cm, 2.5cm, 3cm) of the concave single fish scale structure is modified and the depth h is unchanged, when L=3cm, it has the best resistance reduction capability for the duct, and the maximum resistance reduction rate is 2.8%.

(Keywords) Non-smooth surface; Duct drag reduction; Fish scale structure; Numerical simulation

0 引言

在空调领域,风管是必不可缺少的构件组成, 但在输送气流的过程中,会产生大量阻力,因此, 降低气流输送过程中产生的阻力,对减少能源消耗,提升送风效率有很大的帮助^[1]。非光滑表面单元作为一种被动控制技术,其在工程领域有很重要

作者简介:罗 亮(1999-),男,硕士研究生,E-mail: luo2459044568@163.com

基金项目:国家自然科学基金面上项目(52378106)

通讯作者: 王丽娟(1984-), 女, 博士, 教授, E-mail: wanglijuan@xpu.edu.cn 收稿日期: 2024-01-26

的作用,它通过流动分离控制,增强湍流,加强换 热效率以及降低阻力等功能满足了多种工程需求。 常见的非光滑表面单元包括凹凸结构^[2,3],涡发生 器^[4],微结构^[5]及表面及涂层^[6]等。

非光滑表面减阻技术是20世纪80年代兴起的 一种理论, 1982年, 德国的 Reif^[7]教授通过在平板 表面粘贴具有顺流向沟槽条纹的薄膜,取得了4% 至 7%的减阻效果。中国在 80 年代末也开始了类似 的研究。研究者从茜^[8]等人对不同沟槽横截面形状 的减阻效果进行了探讨,发现刀刃形沟槽的减阻效 果最佳,减阻效果达到9.7%,而三角形沟槽的减 阳效果则为2%。刘志华^[9]通过数值模拟研究了V 型沟槽的尖角半径对减阻能力的影响,发现尖角半 径为零时减阻效果最佳,随着半径增大,减阻效果 逐渐降低,当半径达到沟槽深度的50%时,减阻效 果完全消失。陈大融[10]等人则通过数值模拟和风洞 实验研究了亚音速条件下沟槽壁面的减阻效果,发 现经过优化后的沟槽表面在(Ma=0.4)的亚音速条 件下减阻率最高可达 45.57%。2022 年, 刘霞[11]等 研究了不同凹坑间距对非光滑凹坑表面减阻特性 的影响,通过分析阻力、速度场和涡量等参数,揭 示了凹坑结构的减阻机理,发现凹坑间距为0.4mm 时减阻率最高,达到22.53%。

鱼鳞结构作为非光滑表面单元的一种,在许多 邻域都被广泛使用,2013年大连理工大学的钱风 超^[12]确定了鱼鳞凹坑的基本尺寸范围:直径亚毫米 级,最大深度为微米级,研究了仿鱼鳞形凹坑对 壁面剪应力、近壁区速度分布、壁面压力系数和流 场速度矢量的影响。发现鱼鳞结构虽增加了额外的 压差阻力,但显著降低了表面摩擦阻力,从而达到 减阻效果。2019年长春理工大学的张忠彬^[13]提取 并制作了4个仿生鱼鳞模型,通过实验测量,鱼鳞 的减阻性能值各不相同,最大见减阻率可达 4.814%。

而目前针对非光滑表面单元及鱼鳞结构的减 阻的模型尺寸大多集中在 mm 或 um 级别,很少有 对模型尺寸单位为 cm 级别的研究,针对鱼鳞结构 也并未有对鱼鳞排布结构影响的研究,为验证之前 的 结 论 ,本 文 将 鱼 鳞 结 构 应 用 在 尺 寸 为 120mm×120mm×500mm 的风管中,通过对比上凸 型鱼鳞排布、上凸型单个鱼鳞排布及下凹型单个鱼 鳞排布,研究其分别在不同雷诺数下对气流组织的 减阻特性,并修改单个鱼鳞结构的深度 h 及排布间 距 d,进行研究。

1 模型构建及研究方法

1.1 物理模型

由于水生生物其外形,能够很好的适应在流动 过程对水流所产生的阻力。本文以鲫鱼鱼鳞为模 型,提出一种以鱼鳞状排布的结构,图1为鲫鱼外 形及鱼鳞排布规律。通过以鱼鳞排布规律为灵感, 对比鱼鳞整体排布结构与单个鱼鳞结构,并且将该 单个鱼鳞结构在风管底部进行凹槽的挖取,研究鱼 鳞结构在(*Re*=500-6000)状态下对风管内气流组 织减阻特性,并修改其厚度(*h*),排布间距(*L*), 并与相同工况下平滑结构进行对比。鱼鳞结构的尺 寸参数及排布间距模型如图2所示。

图 2 鱼鳞结构排布与单个鱼鳞结构尺寸模型图

Fig.2 Model diagram of fish scale structure arrangement and individual fish scale structure dimensions

本文主要研究鱼鳞结构在风管内对气流组织 阻力的影响,具体的研究工况为:

(1)通过将 *h*=3mm 鱼鳞排布结构置于风管内 研究其在不同雷诺数(*Re*=1500, 3500, 5500)下 对风管内阻力影响。

(2)通过将单个上凸鱼鳞结构(*h*=3mm, *L*=2cm)置于风管内研究其在不同雷诺数
(*Re*=1500, 3500, 5500)下对风管内阻力影响。

(3)通过将单个下凹鱼鳞结构(*h*=3mm, *L*=2cm)以挖去凹槽的结构形式置于风管内,研究 其在不同雷诺数(*Re*=1500,3500,5500)下对风 管内阻力影响。

(4)通过对平滑结构在风管内模拟其在不同 雷诺数(*Re*=1500, 3500, 5500)下对风管内阻力 影响。

具体的模型如图3所示。

图 3 (a) 工况一: 鱼鳞排布结构 Fig.3(a) Case I - Fish Scale Arrangement Structure

Fig.3(d) Case IV - Smooth duct structure

1.2 数学模型

本研究采用 RSM 湍流模型进行数值模拟,假 设流体流动是稳定的,不可压缩。其中 Re 数,连 续性、能量,动量方程,阻力方程及减阻率分别表 示为:

雷诺数:
$$R_e = \frac{\rho v L}{\mu}$$

式中: ρ 是流体的密度, kg/m³; v 是流体的特征速度, kg/m³; L 是流体流动的特征长度, m; μ 是流体的动力粘度, Pa·s。

连续性方程: $\nabla \cdot V = 0$ 式中: *V* 是流体的速度, m/s。 动量方程:

$$\rho\left(\frac{\partial t}{\partial v} + v \cdot \nabla v\right) = -\nabla p + \mu \nabla 2v + \rho g$$

式中:p是流体压力, Pa; μ 是动力粘度, Pa·s; g 是重力加速度, m/s。

能量方程:
$$\rho\left(\frac{\partial t}{\partial e} + v \cdot \nabla e\right) = -\nabla \cdot q + \Phi$$

式中: *e* 是单位质量的内能, J; *q* 是热流矢量, W/m²; Ф表示由外部源(如耗散)引入的能量, J。

阻力:
$$F_D = \frac{1}{2} \cdot \rho \cdot v^2 \cdot A \cdot C_D$$

式中: ρ是流体的密度, kg/m³; v 是物体相对 于流体的速度, m/s; A 是物体在流向面上的投影 面积, m²; C_D是阻力系数,这是一个无量纲的系 数,取决于物体的形状、表面粗度以及流体的雷诺 数。

减阻率:为了直观的对比鱼鳞结构对气流组织 阻力的影响,引入减阻率这一评判准则,即相同速 度下,鱼鳞结构相较于平滑结构的压降比:即

的进出口压力差, $\Delta p_{\text{鱼鳞}}$ 为带有鱼鳞结构的风管所 产生的进出口压力差。

1.3 计算域

为了更好的观察鱼鳞结构对气流组织影响,将 鱼鳞结构置于尺寸为120mm×120mm的矩形风管 中,风管长度为500(mm),鱼鳞段长度为m, 置于风管底部的中心位置,距进出口端的距离为 (500-m)/2,具体的模型参数见图4,图5为鱼鳞 结构与单个鱼鳞结构在风管内排布示意图。本文采 用 Ansys 公司的 Fluent 软件进行模拟,通过稳态来 计算风管中鱼鳞结构对风管阻力大小的影响。在稳 态条件下,采用 RSM 模型作为湍流模型,每个工 况迭代步数为2000步。在计算过程中,每种情况 下的设定方程残差均达达到稳定状态,显示出了良 好的迭代收敛性。

1.4 网格无关性验证

在科学研究和工程应用中,网格节点数的选择 是一个平衡精度和计算成本的关键因素。随着网格 节点数的增加,计算结果的精度通常会提高,但相 应地计算量也会增大。因此,为了确定最佳的网格 节点数,进行网格独立性验证是必要的。选取单个 下凹型鱼鳞结构(*h*=3mm,*L*=2cm)进行网格划分, 对进出口及鱼鳞结构单独进行加密,选取4种网格 划分方案,本文采用 Fluent Meshing 进行网格划分, 通过 Fluent2022 版本进行计算。

图 6 网格无关性验证 Fig.6 Verification of grid-independence

如图 6 所示,以单个下凹 3mm 鱼鳞结构划分 为例,分别设计了 4 种网格数,通过设置 9 个不同 测点,分别测量每一点的压强。图 6 为 9 个测点不 同网格数下的压强,可以看到,2 号网格与 3 号网 格结果趋于一致,与一号网格相差 0.25%,说明 3 号网格已经具有较高的精度与省时性,满足模拟要 求,故采用 3 号网格方案。

2 结果与讨论

2.1 计算结果

表1为四种工况在鱼鳞结构厚度为3mm,单个鱼鳞结构排布间距为2cm,三种雷诺数 (*Re*=1500,3500,5500)下的压差及阻力结果。 图7为四种工况在三种雷诺数(*Re*=1500,3500, 5500)下进出口压差,风管内所产生的阻力对比图。

如表1及图7所示,四种工况下,上凸型鱼鳞结构及上凸型单个鱼鳞结构相比平滑风管结构,其

T 1 1 1

进出口压差及风管内所产生的阻力要比平滑结构 风管所产生的进出口压差及风管内所产生的阻力 要大,说明添加上凸型鱼鳞结构及单个上凸型鱼鳞 结构后,使风管内的阻力增大。而下凹型鱼鳞结构 在进出口压差及风管内所产生的阻力要小于平滑 结构风管内所产生的进出口压差,这说明这种下凹 型鱼鳞结构对削减风管阻力产生效果。因此,对单 个下凹型鱼鳞结构在风管内减阻能力展开研究。

表 1 四种工况下对风管内气流组织模拟结果

• • • • • •

Table 1 Simulation results of airflow organisation in ducts under four working conditions						
工况	雷诺数(<i>Re</i>)	进出口压差(Pa)	风管内所产生阻力(10-3N)			
	1500	0.01645	0.15002			
上凸望끨疄排巾结构 (<i>h</i> =3mm)	3500	0.06716	0.63517			
(<i>n</i> -311111)	5500	0.14347	1.36			
一日光人到在继仕	1500	0.01642	0.149213			
上百里个望世鳞结 $(h=3mm, I=2mm)$	3500	0.06776	0.640154			
	5500	0.14571	1.39			
丁叩刑畄人央继仕	1500	0.01618	0.147327			
下凹型单个更鳞结 (<i>h</i> =3mm <i>L</i> =2cm)	3500	0.06572	0.586793			
	5500	0.14004	1.32			
	1500	0.01564	0.141103			
平滑风管	3500	0.06735	0.624123			
	5500	0.14322	1.33			

图 7 四种工况在三种雷诺数(Re=1500, 3500, 5500)下进出口压差,风管内所产生的阻力对比图

Fig.7 Four working conditions in three Reynolds number (*Re* = 1500, 3500, 5500) under the import and export pressure difference, the resistance generated in the air duct comparison chart

2.2 下凹型鱼鳞结构分析

为了对下凹型单个鱼鳞结构更好的分析,首先研究其在不同雷诺数(Re)下对风管的阻力影响。

以鱼鳞结构尺寸(*h*=3mm, *L*=2cm)为研究对象, 研究雷诺数在(*Re*=500-6000)下对风管内气流阻力的影响。

图 8 单个下凹型鱼鳞结构(h=3mm, L=2cm) 与平滑风管在不同 Re 下阻力,进出口压差,减阻率对比图 Fig.8 Comparison of resistance, inlet and outlet pressure difference, and resistance reduction rate between a single concave fish scale structure (h=3mm, L=2cm) and a smooth air duct at different Re

图 8 为鱼鳞结构尺寸为(*h*=3mm, *L*=2cm)与 平滑风管在不同雷诺数下进出口压差,风管内阻 力,减阻率的对比图。如图所示,在(*Re*=500-2000) 下凹型鱼鳞并未对风管阻力产生影响,反而增加风 管内的阻力。当(*Re*=2500-6000),下凹型鱼鳞结 构对风管的减阻能力提升明显,减阻率达到 2.5%, 并且相比平滑风管结构,这说明该鱼鳞结构在 *Re* >2000 能够降低风管内的阻力。

及鱼鳞排布间距(*L*)对风管内减阻能力的影响, 以排布间距 *L*=2cm 为基准,研究 *h*=1mm, 3mm, 5mm 不同深度情况下的单个下凹鱼鳞结构在 *Re*=1500, 3500, 5500 对风管内阻力的影响,以鱼 鳞深度 *h*=3mm 为基准,研究 *L*=1.5cm, *L*=2cm, *L*=3cm 不同排布间距情况下的单个下凹鱼鳞结构 在 *Re*=1500, 3500, 5500 对风管内阻力的影响。模 拟结果如表 2,表 3 所示。

为更好的研究单个鱼鳞下凹结构其深度(h)

表 2 単・	个下凹鱼鳞结构不同深度 h	下对风管内气流组织模拟结果
--------	---------------	---------------

Table 2	Simulation results of airflov	v organisation in ducts a	t different depths h for	a single concave fish scale s	structure
---------	-------------------------------	---------------------------	--------------------------	-------------------------------	-----------

<i>h</i> (mm)	雷诺数(Re)	进出口压差 (Pa)	风管内所产生阻力(10-3N)	减阻率(%)
	1500	0.01618	0.147285	-3.45
0.1	3500	0.06598	0.624241	2.033
	5500	0.14018	1.33	2.12
	1500	0.01618	0.147327	-3.45
0.3	3500	0.06572	0.586793	2.42
	5500	0.14004	1.32	2.22
	1500	0.01618	0.147357	-3.45
0.5	3500	0.06565	0.586109	2.52
	5500	0.14035	1.33	2.01

表 3 单个下凹鱼鳞结构不同排列间距 L 下对风管内气流组织模拟结果

Table 3	Simulation	results of airflo	w organisation	n in duct wit	h differen	t arrangement	t spacin	g <i>L</i> of	single c	concave	fish sc	ale
---------	------------	-------------------	----------------	---------------	------------	---------------	----------	---------------	----------	---------	---------	-----

structure							
L (cm)	雷诺数(Re)	进出口压差 (Pa)	风管内所产生阻力(10-3N)	减阻率(%)			
	1500	0.01618	0.147271	-3.45			
1.5	3500	0.06591	0.619413	2.138			
	5500	0.14047	1.33	1.92			
	1500	0.01618	0.147327	-3.45			
2.0	3500	0.06572	0.586793	2.42			
	5500	0.14004	1.32	2.22			
	1500	0.01621	0.147557	-3.65			
3.0	3500	0.06545	0.583749	2.82			
	5500	0.13917	1.31	2.83			

图 9 单个下凹型鱼鳞结构(h=1mm, 3mm, 5mm, L=2cm)在不同 Re 下阻力,进出口压差,减阻率对比图 Fig.9 Comparison of resistance, inlet and outlet differential pressure, and drag reduction rate for a single depressed fish scale structure (h=1mm, 3mm, 5mm, L=2cm) at different Re

图 9 为以排布间距 L=2cm 为基准, h=1mm, 3mm, 5mm 不同深度情况下的单个下凹鱼鳞结构 在 Re=1500, 3500, 5500 对风管内阻力,进出口压 差,减阻率对比图。通过图 9 能够得出,当单个鱼 鳞下凹结构排布间距 L 不变时,修改鱼鳞深度 h, 在 Re=1500 时,鱼鳞结构增加风管中的阻力,当 Re=3500,5500 时,单个下凹型鱼鳞结构对风管减 阻起到效果,并且随着鱼鳞深度 h 的增加,减阻逐 渐增加,当鱼鳞深度 h=5mm 时,最大减阻率为 2.5%。

图 10 单个下凹型鱼鳞结构(h=3mm, L=1.5cm, 2cm, 3cm)在不同 Re 下阻力,进出口压差,减阻率对比图 Fig.10 Comparison of resistance, inlet and outlet differential pressure, and drag reduction rate of a single concave fish scale structure (h=3mm, L=1.5cm, 2cm, 3cm) at different Re

图 10 为以排布间距 h=3mm 为基准, L=1.5cm, 2cm, 3cm 不同排布间距情况下的单个下凹鱼鳞结 构在 Re=1500, 3500, 5500 对风管内阻力,进出口 压差,减阻率对比图。通过图 10 能够得出,当单 个鱼鳞下凹结构排布间距 h 不变时,修改鱼鳞深度 L,在 Re=1500 时,鱼鳞结构使风管中的阻力增加, 当 Re=3500, 5500 后,下凹型单个鱼鳞结构对风管 减阻起到效果,并且随着鱼鳞排布间距为 L=3cm 时, 最大减阻率为 2.8%。

下面通过压力场及速度场对单个下凹型鱼鳞结构进行分析。

2.2.1 压力场分析

如图 11 为单个下凹型鱼鳞结构(*h*=5mm, *L*=2cm)压力分布云图,能够看出,在鱼鳞结构的 前方产生了压力较低的低压区,在鱼鳞结构的后方 产生了压力较高的高压区,这使得鱼鳞结构的前后 产生了压力差,形成了一个向后的阻力。

图 11 下凹型鱼鳞(h=5mm, L=2cm) 压强分布云图 Fig.11 Cloud view of pressure distribution for depressed fish scales (h=5mm, L=2cm)

2.2.2 速度场分析

如图 12 为单个下凹型鱼鳞结构(h=5mm, L=2cm)速度分布云图,图 12 为单个下凹型鱼鳞 结构(h=3mm,L=2cm)速度分布迹线云图,从图 12 能够看出,在鱼鳞结构下凹坑处产生明显的回 流,形成回流漩涡,而这个回流漩涡的旋转方向为 流体流动方向,使凹坑上方流体加速流动,从而减 少流体流动过程中流体与壁面间产生的阻力。

Fig.12 Velocity distribution cloud for the downward concave fissure (h=5mm, L=2cm)

3 结论

本文以鱼鳞结构为对象,通过数值计算,对比 了鱼鳞上凸排布结构,单个鱼鳞上凸结构,单个鱼 鳞下凹结构及平滑风管结构对风管内气流的影响。 研究了单个下凹鱼鳞结构在 Re=500-6000 时,鱼鳞 结构对风管内减阻的影响,修改下凹型鱼鳞结构的 深度,排布间距,得出其对风管减阻特性,并探索 了下凹型单个鱼鳞结构的减阻机理。

(1)鱼鳞上凸排布结构,单个鱼鳞上凸结构 相比与平滑风管结构并未对风管减阻起到效果,并 且加大了风管内产生的阻力,而单个下凹鱼鳞结构 相比于平滑风管能够降低风管内的阻力。

(2)单个鱼鳞下凹结构在 Re=500-6000 这段 区间内,当 Re=500-2000 范围时,单个下凹鱼鳞结 构并未对风管减阻起到效果,当 Re>2000 时,单 个下凹鱼鳞结构能够对风管进行减阻,最大减阻率 为 2.5%。

(3)修改单个下凹鱼鳞结构的深度 d,其中 h=5mm 时,减阻效果最为明显,其中最大减阻率 为2.5%。修改单个下凹鱼鳞结构的排布间距 L,其 中 L=3cm 时,减阻效果最为明显,其中最大减阻 率为 2.8%。

(4)单个下凹鱼鳞结构改变了风管底部的压力分布,在鱼鳞结构前方产生低压区,后方产生高压区,使前后产生压差;在下凹鱼鳞结构处产生明显的回流漩涡,漩涡方向为流体的流动方向,使凹坑上方流体加速流动,从而减小阻力。

参考文献:

- [1] 江亿,彭琛,胡姗.中国建筑能耗的分类[J].建设科技, 2015,(14):22-26.
- [2] 申鑫.仿生结构微通道强化传热性能研究[D].昆明:昆明理工大学,2023.
- [3] 朱祥龙,谢帅,邹鑫,等.椭圆形深凹坑管流动与传热特 性数值模拟研究[J].水动力学研究与进展(A 辑),2023, 38(4):578-585.
- [4] 杨泽亮,姚刚.水平矩形通道内纵向涡发生器强化换热的研究[J].华南理工大学学报(自然科学版),2001,(8): 30-33.
- [5] 郑彬.基于表面微结构的高超声速飞行器减阻降温技术研究[D].北京:北京交通大学,2015.
- [6] 江强维.超疏水涂层的制备及应用研究[D].广州:华南 理工大学,2011.
- [7] REIF W E. Morphogenesis and function of the squamation in sharks[J]. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 1982,164(1-2):172-183.
- [8] 丛茜,封云,任露泉.仿生非光滑沟槽形状对减阻效果的 影响[J].水动力学研究与进展(A 辑),2006,(2):232-238.
- [9] 刘志华,董文才,夏飞.V型沟槽尖峰形状对减阻效果及 流场特性影响的数值分析[J].水动力学研究与进展(A 辑),2006,(2):223-231.
- [10] 封贝贝,陈大融,汪家道.亚音速飞行器壁面沟槽减阻研究与应用[J].清华大学学报(自然科学版),2012,52(7): 967-972.
- [11] 刘霞,王国付,曹慧晶.凹坑表面减阻技术数值研究[J].当代化工,2023,52(1):167-171.
- [12] 钱风超.仿生鱼鳞形凹坑表面减阻性能的数值研究[D]. 大连:大连理工大学,2013.
- [13] 张忠彬.仿生鱼鳞微结构制造及其减阻性能研究[D].长春:长春理工大学,2021.